Your Tech Stack Checklist

(use the github)

Languages:

  • R
  • Python
    • Numpy
    • Pandas
    • PyTorch
    • TensorFlow
  • Java
  • C++

Technologies:

  • AWS
  • Hadoop
  • Spark

Your Checklist

1. 📚 Foundational Knowledge:

  • 🧮 Mathematics:
    • 🔢 Linear Algebra
    • ∫ Calculus
    • 🎲 Probability and Statistics
  • 💻 Programming:
    • 🐍 Python:
      • 📜 Syntax and Basic Concepts
      • 📚 Data Structures
      • ↪️ Control Structures
      • 🔄 Functions
      • 🏭 Object-Oriented Programming
    • 🅡 R (optional, based on preference)
    • 🔍 SQL

2. 💾 Data Manipulation and Visualisation:

  • 🔄 Data Manipulation:
    • 🧮 Numpy (Python)
    • 🐼 Pandas (Python)
    • 🔄 Dplyr (R)
  • 📊 Data Visualisation:
    • 📉 Matplotlib (Python)
    • 📈 Seaborn (Python)
    • 📊 ggplot2 (R)
    • 🔮 Interactive Visualisation Tools

3. 🔍 Exploratory Data Analysis (EDA) and Preprocessing:

  • 🕵️‍♀️ Exploratory Data Analysis Techniques
  • ⚙️ Feature Engineering
  • 🧼 Data Cleaning
  • 🚫 Handling Missing Data
  • ⚖️ Data Scaling and Normalisation
  • 🕳️ Outlier Detection and Treatment

4. 🤖 Machine Learning:

  • 👨‍🏫 Supervised Learning:
    • 📈 Regression:
      • 📊 Linear Regression
      • 📈 Polynomial Regression
      • 🔒 Regularisation Techniques
    • 📊 Classification:
      • ⚖️ Logistic Regression
      • 📍 k-Nearest Neighbours (k-NN)
      • 🛡️ Support Vector Machines (SVM)
      • 🌳 Decision Trees
      • 🌲 Random Forest
      • ⛰️ Gradient Boosting
  • 🧠 Unsupervised Learning:
    • 📍 Clustering:
      • 🎯 K-means
      • 🎈 DBSCAN
      • 🌳 Hierarchical Clustering
    • 📉 Dimensionality Reduction
      • 🔍 Principal Component Analysis (PCA)
      • 🔭 t-Distributed Stochastic Neighbour Embedding (t-SNE)
      • 📊 Linear Discriminant Analysis (LDA)
      • 🔗 Association Rule Learning
  • 🏆 Reinforcement Learning
  • ✅ Model Evaluation and Validation:
    • 🔁 Cross-validation
    • 🎛️ Hyperparameter Tuning
    • 🏆 Model Selection Techniques
    • 🎯 Evaluation Metrics
  • 🚀 Advanced Machine Learning
    • 📚 Ensemble Methods (Bagging, Boosting)
    • 📈 Learning Curves and Bias-Variance Tradeoff
    • 💡 Model Interpretability and Explainability (SHAP, LIME)

5. 🧠 Deep Learning:

  • 🧠 Neural Networks:
    • 💡 Perceptron
    • 📚 Multi-Layer Perceptron (MLP)
  • 🖼️ Convolutional Neural Networks (CNNs):
    • 🏷️ Image Classification
    • 🕵️ Object Detection
    • 🎨 Image Segmentation
  • 🔄 Recurrent Neural Networks (RNNs):
    • 🔄 Sequence-to-Sequence Models
    • 🏷️ Text Classification
    • 🎭 Sentiment Analysis
  • 🕰️ Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU):
    • 📅 Time Series Forecasting
    • 📚 Language Modelling
  • 🎨 Generative Adversarial Networks (GANs):
    • 🖼️ Image Synthesis
    • 🎨 Style Transfer
    • 🔄 Data Augmentation
  • **🚀 Advanced

Deep Learning:** - [ ] 🔍 Attention Mechanisms - [ ] 🔄 Transfer Learning - [ ] 🎓 Self-Supervised Learning

6. 🔬 Advanced Topics:

  • 💬 Natural Language Processing (NLP):
    • 📚 Text Preprocessing
    • 📚 Word Embeddings (e.g., Word2Vec, GloVe)
    • 🔄 Recurrent Neural Networks for NLP
    • 📚 Transformer Models (e.g., BERT, GPT)
  • 🕰️ Time Series Analysis:
    • 📈 Time Series Decomposition
    • 🔄 Autoregressive Integrated Moving Average (ARIMA)
    • 🕰️ Seasonal ARIMA (SARIMA)
    • 📈 Exponential Smoothing Methods
    • 📚 Prophet
  • 🎯 Recommender Systems:
    • 🔄 Collaborative Filtering
    • 🎯 Content-Based Filtering
    • 🧮 Matrix Factorization
    • 🔄 Hybrid Methods
  • 📚 Causal Inference:
    • 📈 Experimental Design
    • 📚 Observational Studies
    • 📊 Propensity Score Matching
    • 📚 Instrumental Variable Analysis
  • 🚀 Advanced Deep Learning:
    • 🏗️ Advanced Architectures (e.g., Transformers, GPT models)
    • 🎨 Generative Models (e.g., VAEs, flow-based models)
    • 🚀 Advanced Techniques for NLP and Computer Vision
  • 📊 Bayesian Statistics and Probabilistic Programming:
    • 📚 Bayesian Inference
    • 🔄 Markov Chain Monte Carlo (MCMC)
    • 📊 Probabilistic Graphical Models
    • 📚 Stan, PyMC3, or Edward for Probabilistic Programming
  • 🤖 Automated Machine Learning (AutoML)
  • 🏭 Data Engineering:
    • 🔄 ETL (Extract, Transform, Load) processes
    • 🏭 Data Warehousing
  • 🚀 Advanced Deep Learning (continued from Deep Learning section):
    • 🔍 Attention Mechanisms
      • 🔄 Transfer Learning
    • 🎓 Self-Supervised Learning

7. 📊 Big Data Technologies:

  • 🐘 Hadoop
  • 📂 HDFS
  • 🔄 MapReduce
  • 💥 Spark:
    • 📚 RDDs
    • 📊 DataFrames
    • 📚 MLlib
  • 📂 NoSQL Databases:
    • 🐵 MongoDB
    • 🚀 Cassandra
    • 🐘 HBase
    • 🛋️ Couchbase
  • 📡 Stream Processing Frameworks
    • 📡 Apache Kafka
    • 📡 Apache Flink
    • 🌪️ Apache Storm

8. 💠 Algorithms:

  • Hill Climb
  • Genetic Algorithm; Beam Search

9. 📈 Data Visualisation and Reporting:

  • 🎛️ Dashboarding Tools:
    • 📊 Tableau
    • 💥 PowerBI
    • 🐍 Dash (Python)
    • 🅡 Shiny (R)
  • 📖 Storytelling with Data
  • 🗣️ Effective Communication

10. 🎯 Domain Knowledge and Soft Skills:

  • 🏭 Industry-specific Knowledge
  • 💡 Problem-solving
  • 🗣️ Communication Skills
  • ⏱️ Time Management
  • 👥 Teamwork
  • 💼 Business Acumen:
    • 📈 Understanding of business metrics and Key Performance Indicators (KPIs)
    • 🔀 Ability to translate business problems into data problems and vice versa

11. ⚖️ Ethical Considerations and Bias in Data Science

  • ⚖️ Fairness in Machine Learning
  • ⚖️ Bias Detection and Mitigation
  • 🔐 Privacy and Data Security
  • 🧲 Zook’s 5
  • 🔏 Data Privacy and Governance:
    • 📚 Understanding regulations like GDPR, CCPA
    • 🔏 Data anonymisation and pseudonymisation techniques

12. 🚀 Deployment and Productionisation

  • 🏭 Model Deployment Techniques
  • 📦 Containerisation (e.g., Docker)
  • 🌐 Model Serving and APIs
  • 📈 Scalability and Performance Optimisation
  • 🧑‍💻 Project Management and Collaboration Tools:
    • 📚 Knowledge of version control systems like Git
    • 🗂️ Familiarity with project management tools (JIRA, Asana, etc.)
    • 👥 Experience with collaborative coding platforms (GitHub, GitLab, etc.)

13. 🎓 Continuous Learning and Staying Updated

  • 🌐 Online Courses and Tutorials
  • 📖 Books and Research Papers
  • 🎙️ Great Podcasts
  • 📚 Conferences and Workshops
  • 👥 Networking and Community Engagement

14. 👨‍💻 Software Engineering Best Practices

  • ✏️ Writing clean, efficient, and reusable code
  • 🐜 Code testing and debugging
  • 🏗️ Understanding of design principles and architectural patterns
  • 💻 Familiarity with Integrated Development Environments (IDEs)